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Abstract

The purpose of this paper was to propose proper sensitivity analysis criteria which can
minimize calibration efforts and produce reliable effluent quality predictions. ASM1 and ASM3
parameter sensitivity (in combination with a one-dimensional settling model) was analyzed by
various criteria based on the step variation of single parameters (SVM) or random variations of
all parameters (RVM), using the /WA Simulation Benchmark (Copp et al 2002). SVM was not
significantly affected by the analysis conditions and it produced reliable AEQ values in every
case. Moreover, it was the easiest and simplest methodology. Once selected the parameters
were estimated with a genetic algorithm. It was concluded that SVM was the best sensitivity
analysis criteria for both ASM1 and ASMS3 in this case.
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INTRODUCTION

The complicated and nonlinear characteristics of the activated sludge models (ASMs) make it very difficult to identify the
system behavior. Parameter estimation is essential for process modeling, but it generally requires lots of time and effort. It has
been reported that the success and failure of a model application are strongly related to the cost for stoichiometric and kinetic
parameter estimation (Sollfrank and Gujer, 1991; Ko et al., 2001).

Sensitivity analysis is an essential procedure for selecting significant parameters which can have serious effects on process
behavior, prior to numerical parameter optimization. The aim of this study was to understand the sensitivity of ASM1 and
ASM3 parameters and to suggest a criteria for selecting sensitive parameters. Even though a sedimentation process might have
an impact on the biological process, the settling model has been commonly ignored during previous sensitivity analysis
research. In this paper, the sensitivity of settling model parameters also has been analyzed.

METHODS

Target process and models

The target process was the denitrifying layout of the IWA Simulation Benchmark (Copp et al., 2002). Simulation Benchmark
adopts ASM1 and a one-dimensional settling model (Takacs et al., 1991) for biological reactors and the clarifier, respectively.
In this study, ASM3 was also included and sensitivity analysis of the parameters was performed.

Effluent Quality (EQ) index for sensitivity indexes and objective function calculation

Selection of sensitive parameters might be influenced by the sensitivity index (SI) calculation method (Saltelli ef al., 2000). In
this study, eleven SI calculation methods were examined (Fig. 1). Sensitivity indices were based on Effluent Quality (EQ) as
defined by the IWA Task Group. Slight modifications had to be made for calculating the ASM3 EQ (Kim et al. 2004).

The difference in EQ (AEQ) was calculated as below;
AEQ = EQ,, - EQ,, (Eq. 1)
where EQgres = EQ calculated with reference parameters values
EQva = EQ calculated with varied parameters values

After selecting the parameters, they were estimated with a genetic algorithm (GA) aimed at minimizing AEQ.

Sensitive parameter selection criteria
The criteria for selecting sensitive parameters is shown in Fig. 1. Each parameter was changed from 50 to 200% of its
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reference value. The parameters were changed by 10% for the step variation method (SVM). For the random variation method
(RVM), 2,000 simulations were conducted with randomly selected sets of parameters.

Tab. 1. Values of insensitive parameters according to the type of model.

ASM1 ASM3
Reference simulation Estimation step Reference simulation Estimation step
Ideal case Simulation Benchmark Simulation Benchmark  ASM3 defaults ASM3 defaults
defaults (Copp et al., 2002) defaults (Henze et al., 2000)
Practical cases ASM1 defaults Simulation Benchmark  Tuned for Bio-P Module ASM3 defaults
(Henze et al., 2000) defaults (Rieger et al., 2001)
Parameter Influent Parameter o L .
Models  ncertainties types variation methods Sensitivity indexes and objective functions
Simulation - .
_ldeal Step variation of single o
ASM1 — case ﬁ:ﬁgﬁnark parameter (SVM) Plot AEQ Slope
Random variation of all ~ Scatter plot Slope of moving average
parameters (RVM) of AEQ (SlopeMA) o
Divide into
CRF plot area 2,3,4,56,7,8
sections, individually
6 commonly
appeared parameters
Every
i Simulation - . appeared parameters
| Practical g0 0 mark Step variation of single i Apq Slope
cases | influent parameter (SVM)
Random variationof all ~ Scatter plot Slope of moving average
parameters (RVM) of AEQ (SlopeMA)
CRF plot area divide
into 4 sections (CRF4)
— Sg doubled —— Same cases with above
‘— NH, doubled —— Same cases with above

ASM3 — Everye cases done with ASM1

Fig. 1. Tested sensitivity analysis criteria.

Parameter estimation

After parameters were classified into sensitive or insensitive, only the most sensitive parameters were optimized with GA (Kim
et al., 2002). Carroll’s GA was applied (Kim ef al. 2004, Yang et al., 1998) and the applied genetic operator was a two-member
tournament selection, uniform crossover, flip and creep mutation, elitism and niching (Goldberg, 1989).

RESULTS AND DISCUSSTION

Sensitivity analysis
Step variation of single parameter. The impact on EQ was plotted against the parameter value and the greater the impact ,the
higher the sensitivity. The most sensitive five parameters of ASM1 and ASM3 selected by SVM were as following:

- ASMI : Yy, by, lmax,a> Ko,a, ba

- ASM3 : YstoNo, YHNO> Kmax.A> TINO> DA

Random variation of all parameters. Calculated AEQs versus the varied parameters were presented as a scatter plot. If a
parameter was insensitive, dots distribution inside each vertical section was uniform, implying that the effect from the variation
of that parameter was not significant and could be compensated by the variation in other parameters (Fig.2a) The sensitive
parameters resulted in a different distribution of dots (Fig.2b). For quantifying the sensitivity, two different methods were used,;
1) slope of moving average in each vertical section as shown in Fig. 2a and 2b, 2) area of cumulative relative frequency (CRF)
(data not shown). K and p,,, o Were selected as typical examples of insensitive and sensitive parameters, respectively.
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Fig. 2. Sensitivity parameter selection criteria based on RVM;
(a), (b) scatter plot and slope of moving averaged K and py., o in ASM1, respectively

Selected sensitive parameters and simulation results in the ideal case

Sensitive parameters of ASM1. SVM identified Yy, by, Umaxa, ba and Ko 4, as being sensitive and RVM identified Yy, by,
Hmax A, ba, kn (for ASM1) and v, and r;, (for the one-dimensional settling model). Yy, tmaxa, and 1, were identified by RVM in
every case, and v, was identified in all cases except SlopeMA. RVM identified one or two settling parameters each time, but
those did not show high sensitivity with SVM (Tab. 2).

Sensitive parameters of ASM3. SVM identified Ysrono, YuNo, Hmaxas Da and nyo as being sensitive, while RVM identified
YH,02, INXs> Mmaxa» Das Ko.as Th @and vq. Just like in ASM1, one or two settling parameters were identified by RVM in each case
except SlopeMA and CRF8 both of which did not identify any settling parameters. The nitrogen content of Xs (in xs), Was
identified by RVM and it was reasoned that this parameter had a large impact on the nitrogen concentration to be nitrified. No
criteria identified by and k;, as sensitive which is in contrast to the ASM1 results.

Tab. 2. Selected sensitive parameters and simulation results at ideal case. Tab. 3. Selected sensitive parameters and simulation results at practical cases.

Analysis methods Highly sensitive parameters aEQ Absolute error (mg/L) Analysis methods Highly sensitive parameters Absolute error (mg'L)
Variation  Sensitivity  Stoichiometric Kinetic Settling Sensitivi arQ
? COD NH, NoO; TS§ ensitivity N - .
Influent 1 Stoichiometric Kinetic Settl N
method Index Index ype inetic ing COD NH, NO, TSS
SVM Vi, bi, Mmaa ba. Koa 057 045 oo 002 o033 SVM S.B.default Y, by, Pmaxcas  ba. Koa 209 013 002 002 062
Henaca,
RVM SlopeMA Yy, ba. Koa, 1Y 091 009 002 002 007 Ssdoubled Y, bu. Hmaca,  ba, Koa 252 148 003 002 008
Himaxa. !
CRF2 Ya. ba. Tn Yo 369 001 018 001 0.00 N, doubled Y, by, ba, Koa 1162 031 007 045 043
CRF3  Yu M g I Vo 369 001 048 001 000 T T T T T T T T
o RVM- S.B. defautt Y, powcr. ba, Ko, 1Y 303 078 001 005 051
CRF4 Vi kn Vo 108 012 001 002 018 SlopeMA
opel .
e A Ssdoubled Y, Ko, Mmexa. Koa. Vi 113 037 001 001 012
CRFS Y. b, M . Vo 401 050 010 004 029 B # o ’
CRF6  Yu. M K T vo 108 012 001 002 018 NH.doubled Yy, Pmaca.  ba. Koa, Vo 857 092 012 022 042
CRF7 Ya, Kn, Ty, Vo 108 012 o001 002 018 RVM-CRF4 5B default Ya, Henax Ar K T Vo 613 026 023 001 094
[IEN9Y _
CRF8 Vi ko . A\ 108 012 001 002 018 Ssdoubled Y, bu. HinaxAe T, Vo 1775 0.58 003 037 8.66
Common6 Y, s ba. ko In Vo 1133 279 018 000 215
NH, doubled Y, My kn, Th, Vo 11.16 030 009 033 123
Every?  Yu, by, ba, Kn, Ty, Vo 472 045 015 002 042 v— o
ASM3
. . Kinetic Settling
Kinetic Settling £
Ysroxo, SVM B. default Y. Y b,
SVM Yuno, Pemoca, ba, Tno 266 002 012 002 001 S.B. default Ystono, HNO, Hmaxa.  Da, Tvo 053 002 002 001 001
RVM SlopeMA Yhor s Mmsca, ba. Koa 076 004 002 001 003 Sydoubled  YST00: Yoo, Yao. M A N 240 035 006 001 034
CRF2 Yo, Its, - Pomc e T Yo 176 005 002 006 010 NH, doubled YSTONO-Yyyop  Yitno. Hmocas b 047 000 000 001 008
CRF3 Yhoun N, Hmeca. ba, Vo 081 021 000 002 008 T T T n T m e
. RVM- S. B. default Yuor N Hmwca. ba, Koa 541 0.8 025 015 0.76
CRF4 iNXe Mo, Da T, Vo 158 026 002 004 022
SlopeMA .
CRF5 o Mo Da, I Vo IS8 026 002 004 022 Ssdoubled  Ystoo, Ynor e Hmects Hmocr 051 033 000 000 027
CRF6 Yhor N, Mmaca. ba Vo 081 021 00F 002 008 NH, doubled Yuor fxi. Hmaca,  ba. TINO.END 283 0.03 010 004 005
CRF7 inxs. Mmoca. ba, v 222 034 005 003 O.I1
s fmaca. ba, Koa ° RVM-CRF4 s B gefautt i Hmoca. ba. B Vo 1982 002 065 034 001
CRF8 Yhon inxe Mmea. ba, Koa 087 003 003 001 002
. Ssdoubled  Ysto.01, Yuon Hmexas Koa. T 219 056 0.00 003 037
Common6 Yo i, Hmeas Da T Vo LI4 025 002 000 020
Everv7 Yion inse pmea D Koa M Ve 165 038 018 013 019 NH, doubled Pmoca,  ba Ih  VoTp 5683 004 007 277 001

Selected sensitive parameters and simulation results in the practical cases

Sensitive parameters of ASM1. In the practical cases, a different set of insensitive parameter values was used for the reference
simulation. Three criteria were examined at practical cases; SVM, SlopeMA and CRF4. In the practical case, SVM identified
precisely the same parameters as identified in the ideal case. This suggests that SVM is not significantly affected by influent
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type and the insensitive parameter values and further suggests that this methodology is valid for ASM1. This contrasts the
SlopeMA and CRF4 results which identified different parameters depending on the simulation setup (Tab. 3).

Sensitive parameters of ASM3. The various simulation conditions identified a total of 15 sensitive parameters as compared to 9
for the ASM1 simulations. In this case, different parameters were selected and no criteria exhibited consistent results.

Parameter estimation with GA and validation

With the sensitive parameters identified, a genetic algorithm was then used to estimate the values of the sensitive parameters to
see if the genetic algorithm could find the solution and minimize AEQ. Previous work (Kim ef al. 2002) suggested that the use
of a genetic algorithm was a suitable choice for finding optimal parameter values. However in this case, finding the solution is
complicated by the fact that the IWA Simulation Benchmark quantity, EQ, is a composite variable composed of carbon and
nitrogen state variables meaning that it could be possible to minimize AEQ (or even find a AEQ of zero) with a different
combination of nitrogen and carbon species. A list of sensitive parameters, AEQ and absolute errors of effluent COD, NH,,
NO; and TSS according to sensitivity analysis criteria are shown in Tab. 2 and 3 under ideal and practical cases, respectively.

The highest AEQs (ignoring Commoné6 and Every7) were 4.01 and 2.66 for ASM1 and ASM3 respectively in the ideal case.
These relatively high values were attributed to an NH,"-N and NO;-N prediction error less than 0.2 mg/L. For practical
purposes an error of this magnitude is negligible, but it is amplified in this case by the IWA weighting factor of 20 applied to
nitrogenous species. It was therefore concluded that SVM combined with a well-tuned GA is a suitable approach for
sensitivity analysis and parameter estimation.

CONCLUSIONS

Various sensitivity analysis criteria were examined in an effort to minimize calibration efforts and produce reliable prediction
results. For ASM1, the step variation of single parameters (SVM) proved to be any acceptable approach and provided similar
results regardless of the simulation conditions. In previous research, Ko  and b, were regarded as insensitive, but in this case
those parameters showed high sensitivity. Other criteria based on random variation of all parameters (RVM) exhibited different
sets of sensitive parameters in each case demonstrating that SVM was the better approach. For ASM3, no criteria exhibited
consistent results and no conclusion could be reached about which ASM3 parameters were the most sensitive. But, it should be
noted that SVM presented reliable AEQ values at every influent condition. Moreover, it was the simplest methodology.
Therefore, it is concluded that SVM is a reasonable approach for both ASM1 and ASM3.
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