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Abstract

Several factors have contributed to increase the interest in improved operation of
wastewater treatment plants. The demands for better effluent quality, more
economic operation are met by significant improvements in information
technology, instrumentation, control methodology and process knowledge. This
has created a new platform for better plant performance, measured in effluent
quality and in cost efficiency.

Two aspects - estimation and control - will be emphasized in this presentation. By
using recursive estimation relevant parameters or states can be calculated, that
are too expensive or impossible to measure directly. Examples will be given from
the activated sludge process. By presenting these parameters to the operator there
are new and better ways to interprete and identify process conditions. Moreover,
by extending the on-line instruments with estimators the operator will get
automatic early warning systems for process or instrumentation failures.

By using knowledge based systems the on-line estimation schemes can be added
on top of the operator observations and laboratory tests. This will hopefully result
in better diagnosis for complex operational conditions.

Self-tuning and other types of adaptive controllers have been used for dissolved
oxygen control. Examples from these studies will show the advantage and the
problems associated with more complex control.

For both estimation and advanced control tasks it is necessary to obtain relevant
dynamical models. For these purposes there are other types of models necessary
than for construction and simulation. A crucial problem is the verification of
models from real plant experiments. This problem is valid for both controller
models and for structured simulation models. Some problems on verifiability will
be discussed.



Introduction

For any operator it is a wellknown fact that a wastewater treatment plant is
hardly ever in steady state. Sewage works are dynamical systems, that most of the
time are in different transient stages. This is a result of ever changing influent
flow conditions, where both flow rates, compositions and concentrations vary.
Strong couplings between different unit processes, e.g. between the settler and the
aerator or between sludge supernatants and the wastewater processes, makes
some kind of production planning necessary in order to obtain a successful
operation (Olsson (1985)). Despite dynamical character of treatment plants most
current design and operation methods are based on the assumption of steady
state. Thus, wastewater treatment systems are generally regarded as
intrinsically inflexible. Consequently the operation is unsatisfactory in many
sewage works, as the influent flow conditions vary to a great extent, even if the
average values are kept within the design limits.

Influent flow disturbances to a wastewater treatment plant may vary
significantly, both in amplitude and in frequency. In a concentrated sewer
network flow variations are often large, whereas they are attenuated in more
widely distributed networks. Rainstorms can cause shock loads, that upset the
settler and clarifier systems, and this can seriously affect the whole plant system.
Some hydraulic disturbances originate within the plant as recycle, wasting or
influent pumping rates change. During dry weather flow, the most significant
flow variations come from the pumps lifting wastewater into the plant, which
may cause both high frequency and high amplitude disturbances (Olsson et. al.
(1986)).

Concentration disturbances vary in amplitude and frequency. The
characterization of the disturbances is often very imprecise and measures like
BOD, TOC or COD only reflect a lumped value of oxygen demand that does not
necessarily inform how the system would react to the disturbances. In addition to
diurnal variations in BOD, several types of additional loads may appear. The
operations required to meet these disturbances have to be flexible. This demands
flexible pumping and valving. Such examples are step feed control, variable speed
pumps for recirculation and primary pumping and valves that allow for control
actions. In several cases the situation can be significantly improved if upstream
information is obtained, i.e. feedforward information. This is particularly useful
in dealing with industrial effluents. Sometimes the discharge may be buffered in
order to arrive at the plant during low load periods.

The need for automatic detection of large disturbances is even more significant for
small and unmanned plants. These may be designed to operate satisfactorily
during normal diurnal variations provided adequate flow balancing is possible.
Certain discrete events, however, may upset the process and demand the
attention of an operator.

Some of the control problems in sewage works resemble those in chemical process
control. There are several local sequencing and feedback loops. Some of these are
discussed in the paper. Recursive estimation is a powerful tool to calculate
indirect parameters of the process, thus giving on-line information that may
serve as an early warning system for process failures. This technique is
demonstrated for the on-line calculation of respiration and for clarifier
monitoring.



The use of quality parameters for the control of sewage works is not widespread.
Dissolved oxygen control is getting common but many problems remain, such as
the proper choice of spatial air distribution and of setpoint values. Adaptive
control of the dissolved oxygen in full scale has shown some interesting features.
It is possible to cbtain accurate control with long sampling intervals, of the order
12-15 minutes. As part of the control the oxygen uptake rate and the oxygen mass
transfer rate are estimated simultaneously, even if both the parameters are time
varying. The relation between different control schemes and floc settling and
clarification properties is being tested in current research projects.

Despite automation the role of the human cperator is crucial and desirable. A
man’s ability to look, smell, feel and hear a lot of phenomena in a biological
process is superior to any sensor. With a knowledge based computer system the
operator can be helped to keep track of all the information, that sometimes can be
overwhelming in an alarm situation. Therefore, a combination of automation and
computer assistance for the operator can be a powerful tool for a better operation.

Recursive Estimation

It is clear that more information than the primary sensor signals are required in
order to get a good operation. By combining a mathematical model with
measurement indirect variables can be calculated. This can form the basis either
for better process operation diagnosis or control based on quality related
parameters.

We will discuss two types of estimation, state estimation and parameter
estimation. In state estimation the process parameters are assumed to be known.
Some unmeasurable state variable (such as a concentration) can be reconstructed
from a dynamical model combined with measurements. For linear systems with
process and instrument noise the Kalman filter is optimal under certain
conditions, see e.g. Astrom-Wittenmark (1984). Ordinary mass balance
calculations are simple examples of estimation. By measuring flow rates and
suspended solids concentrations of aerator influent and effluent streams the
MLSS concentration can be predicted as well as checked against current
measurements.

Several subprocesses can be modeled according to a time series model with
stochastic inputs,

y(ty) = -a1-y(ty) - ag-y(tke) - .- apy(tyn) +
+ bo-ulty) + by-ulty1) + ... + bpulty,) +
+ co-elty) + cr-e(tyy) + ... + cq-e(tyn)
e8]

where y is the process output, u the manipulated variable and e a sequence of
normally distributed stochastic variables with zero mean and unit variance. The
sequence of e usually gives a realistic description of both instrumentation and
process noise. The parameters aj, bj and ¢{ may be slowly varying with time. The

parameters can in fact be tracked on-line and corrected for each new
measurement obtained. This is called recursive parameter estimation and it is a
useful tool in wastewater treatment, since the systems often are time-varying in
the parameters. Examples from respiration estimation and clarifier dynamics
are given below.



In recursive parameter estimation of an input-output model a parameter vector 6
1s assumed to vary with time. However, the parameter variation is assumed to be

considerably slower than the state variable rate of change. For the model above, 8
can be defined by

0 =[ay, ag, ...,a,b1,._..,bn,cl,...cn]T

" The updating formula looks like

0tic41) = 6610 + K - (060 - 560
@)

that says that the updated estimate of the parameter vector is equal to the previous
value plus a correction factor. K is a gain and the bracket tells the difference
between the current measurement and the model prediction of the measurement.
The size of K depends on the measurement as well as the model accuracies.
Intuitively it is clear, that a poor measurement quality should be reflected into a
small value of K.

Oxygen Uptake Rate

For a long time it has been recognized, that the oxygen uptake rate or respiration
(R) is a relevant measure of organic load of the activated sludge system
(Olsson-Andrews (1978)). Knowledge of R along with the measurement of mixed
liquor volatile suspended solids defines the value of SCOUR, the specific oxygen
uptake rate. The knowledge of SCOUR is a crucial first step in sludge inventory
control. With a respirometer the oxygen uptake rate can be measured directly.
However, as part of a dissolved oxygen control system it can be estimated. The
obvious way to estimate R on-line is by considering a DO mass balance. For a
complete mix reactor it is

de Q. . . (c5-¢) -
mn V(cm (1+r)c) + kpa-(cs-¢)-R o

where
Q = influent flow rate
V = reactor volume
¢in = influent DO concentration

¢S = DO saturation concentration
r = return sludge flow rate ratio, i.e. return sludge flow = r-Q
ky,a = oxygen mass transfer rate

If k1,a is known, then the estimation of R is straightforward. In practice,
however, kj,a is not known and may be slowly time-varying, why it has to be
estimated together with R. It is often assumed that k[ a is linearly related to the
air flow rate in an air diffusion system,

kpa=aj - Fajr + a2 4)
where the a; parameters have to be established independently around each

operating point. They may also vary with time. Assume, that a control system
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keeps the DO concentration constant, ¢ = ¢g. Then R is directly related to the air
flow rate. Consider the steady state DO mass balance,

dep _ Q (cin - (1+1)-co) + (a1-Fair + agk(cs - co) - R

0=8%0
dt Vv

(6)

The first term of the right hand side can often be neglected in comparison with the
other terms. Consequently, if F,i; does not saturate, the respiration can be

expressed in terms of the air flow rate,

R=byFair+b

The oxygen mass transfer rate can be estimated on-line or off-line by identification
of the DO concentration dynamics. This is made possible by one simple
observation and one crucial assumption. The oxygen uptake rate is independent of
the DO concentration as long as the DO concentration is sufficiently large. It is
crucial that R is constant during the identification experiment. Then a change of
the air flow rate will create an approximate first order system response of the DO
concentration. The time constant of the response is directly related to the value of
k1,a, i.e. for a higher value of the mass transfer rate there is a shorter response
time of the DO concentration to an air flow change. When a linearized model is
used, the validity of the linearization is limited if the air flow changes are large.
This is the background to the identification experiments reported in
Olsson-Hansson (1976a,b). In order to avoid the crucial assumption of a constant
R the work has continued to estimate k1,a and R simultaneously, which is further

discussed below.

Still another estimator was presented in Holmberg-Olsson (1985). The purpose of
the estimator was to find R directly from air flow and dissolved oxygen
measurements. This is not a trivial problem, since ky,a is generally not known.

However, kp,a and R are not simultaneously identifiable. Consider the DO mass
balance above. A simultanous change in kj,a and R would not change the DO

concentration. Therefore the problem has been solved by some extra assumptions.
Before we mentioned the assumption of constant R. Another one is of course that
ky,a is known. In Holmberg-Olsson (1985) it was assumed that ky,a and R change

in different time scales. Still another approach depends on particular excitations
of the air flow rate, that will make it possible to distinguish uniquely between the
parameters. However, during poor excitation (e.g. small air flow rate changes)
the estimation may fail. A stochastic approach was taken in the estimation,

where the parameter vector 6 was considered a random variable. It has been
demonstrated that this Kalman filter converges to the right parameter values. A
serious drawback, however, is a slow convergence. This can be overcome by the
addition of larger air flow excitations. To estimate R under closed loop needs
another approach, which is discussed in the dual control section.

Clarifier Dynamics
The final settler of an activated sludge plant is crucial for the whole operation of
the system. Intermittent pumping will create hydraulic waves, that propagate

through the plant. Poor operation of the primary pumps often create large
overshoots of suspended solids concentration in the effluent. It may take several
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hours before the effluent concentration will decrease to its normal value again. In
the mean-time a large amount of sludge can be lost from the system
(Olsson-Stephenson-Chapman (1986)).

The dynamics of secondary clarifiers has been studied in Olsson-Chapman (1985).
In the work it was attempted to obtain dynamical models with a minimum
number of parameters, but still a sufficiently rich structure that would explain
the physical nature of the clarifier transients. The models recognize the fact, that
the effluent suspended solids concentration does not momentarily change with the
influent flow rate. Instead there is a dynamical relationship between the effluent
suspended solids and the solids load to the clarifier, i.e. the product of mixed
liquor suspended solids concentration and the flow rate. In a simplified manner
the dynamics can be written as

celti) = a3-celti-1) + a-Celty-2) +

+ by-ex(t1)- Qltk1) + bo-cx(ty2) Qltk.2) + v(ty) ©

where
ce(t) = effluent suspended solids concentration

cx(t) = MLSS concentration

Q(t) = flow rate into clarifier
v(t) = stochastic disturbances

The coefficients are different for decreasing and increasing flow rates. For
decreasing flow rates a first order dynamics usually will describe the behaviour.
The parameters can gradually change due to two different causes. One change is
a result of changing floc properties and the other is caused by instrument drift.

The estimator updates the parameters 6, i.e. the a; and b; values, according to the

recursive scheme where the y represents the effluent suspended solids
measurement and predicted measurement the corresponding model prediction
from (6). The a; and bj parameters in the clarifier model have no apparent

physical interpretation. Still they can be used for monitoring purposes. If some
parameter exceeds an established limit, the reason for the deviation has to be
examined further, since both calibration errors and changing flow properties may
cause the problem. Thus the parameters may have an empirical relation to the
initial settling velocity. By observing the parameters the operator has got an early
warning system for changing process behaviour.

Self tuning control

Conventional control of system parameters assume, that the plant dynamics does
not change with time. In other words, a controller with constant setting is
adequate. This is not generally true, and the dissolved oxygen dynamics is a
typical control loop, where the tuning of the controller needs to be adjusted as soon
as the loading of the plant changes. In principle, the self-tuning control system is
characterized by two loops, according to figure 1.

The regulator loop acts like a conventional controller, but the regulator
parameters are updated from a slower loop including parameter estimation. This
kind of parameter estimation is in principle built on the same kind of model
structures as the time series models. The model is updated by a recursive
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estimation algorithm that gives either the new regulator parameters directly or
the process parameters, from which the updated regulator parameters are
calculated.

plant
_ paramete
Design Par.ame?er
calculations »| estimation '
regylator
pargmeters
Command
signal out
outpu
Regulator > Plant g
» control
signal

Figure 1. Block diagram of a self tuning regulator.

The self-tuning controller was first installed in one of the six aerators at the
Kappala plant in 1984. This phase was reported in Olsson-Rundqwist-
Eriksson-Hall (1985). During almost four years of operation the controller has
behaved very well, and now all the six parallel aerators are controlled in the same
way, see Rundqwist (1986). Due to the inherent non-linearities as well as
changing ky,a and saturation concentration the controller needs to update its

parameters both in an hourly time scale and in a slower time scale. The controller
operates so that the regulator parameters are updated directly. Therefore it does
not give any explicit information about the plant parameters, such as ky,a or the

respiration rate.

Dual control

The simultaneous control of the DO and identification of the respiration is difficult
due to the identifiability problem mentioned above. This has led to a special dual
control method, reported by Holmberg (1986, 1987) and Holmberg-Olsson-
Andersson (1988). The controller is a non-linear controller that seeks to keep the
DO close to its setpoint. However, the air flow rate is excited in a special manner,
so that the air flow rate has an extra disturbance in every sampling interval (15
minutes). This makes the DO to slightly oscillate around its setpoint, but also give
the estimator sufficient information to identify both ky,a and the OUR. The dual

controller has been tested successfully in full scale at the Malmo sewage works in
Sweden.

Knowledge based systems

It is clear that there is still very little, if any, coordination between the local
control loops in most treatment plants. The control loops are primarily designed to
respond to minor disturbances rather than major process upsets. There is still a
significant lack of on-line instruments and precise quantification of the process
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knowledge. Therefore the man in the loop will play an important role, even if the
degree of automation in the plants will increase.

The time-scale also determines where computer control or guidance is successful.
It is not only for the fastest control loops that the computer can assist, but also for
the very slow dynamics. The plant operator or manager will have problems to
observe the gradual changes that take place in the weekly and monthly
timescales. Therefore it is inevitable that a knowledge-based (or expert) system
would sooner or later be called for.

In some early implementations of computer systems in wastewater treatment
systems the software contained some simple rules for control actions in the event
of major deviations from normal operating modes. Some accumulated process
knowledge was used in 1977 in two papers to design a more elaborate control
system. Gillblad-Olsson (1977) defined some operational states that were
associated with specific combinations of control actions. The system was
implemented at a municipal treatment plant. Tong et al (1977) used fuzzy (or
multiple-valued) logic was used to formulate linguistic rules for control actions.
Already in 1974 a rule-based system for computer-assisted operation of anaerobic
digesters was developed in the USA (Koch et al (1974)). This was followed up in
1984 by a knowledge-based system, coded in a different way by using about the
same logic (Maeda (1984)).

The process diagnosis part of control seems to be a crucial step. The purpose is to
obtain maximum use of the combination of on-line instruments, process models,
human observations and laboratory analysis. In a typical operational mode the
computer may alert the operator from direct readings of sensors and from
estimated parameters. In a knowledge based diagnosis system the operator may
input his own observations. The computer can help to reason and suggest further
off-line and laboratory tests to trace the process fault. This kind of backward
reasoning has the potential to be a good supplement for the operator.

The area of applied artificial intelligence is receiving increasing attention in the
field of water resources in general (Patry-Gall (1987)) and wastewater engineering
in particular. Research is being performed to develop failure diagnosis/prevention
expert systems that can assist the operator.

Model verification

The dynamics in a wastewater treatment plant cover a very wide spectrum, from
minutes to months. This makes any model approach extremely complex, and
there is never such a thing as the model. For any operator it is wellknown, that
the plant responds to disturbances of widely varying nature, both in amplitude,
duration and frequency. A dynamical model should reflect the plant behaviour,
both its response to external disturbances and its inherent dynamical character.
It is crucial to state the model purpose accurately, or otherwize the model may
turn out to be of little value.

A model is in a sense a condensed version of available knowledge of the plant
behaviour. Unfortunately the comprehension does not increase simply by adding
new equations or coefficients to the model description. However, even an
incomplete dynamical model may be useful, and may at least qualitatively verify
observations of the process responses to different disturbances. Thus a dynamical
model can be a valuable tool to explore the consequences of different disturbances
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or parameter changes. By finding out the most sensitive parts of the model better
verification experiments can be designed.

A model for control purposes should not be too complex. It is crucial that it is
verifiable with available on-line instrumentation. Its parameters may not have
any obvious physical interpretation, but still describe a reasonable relationship
between two measureable variables of the plant. We will discuss this type of
models in the time series and adaptive control section. Some of the on-line models
are used for control design, some other models are used for process diagnostics
purposes.

The many interacting species and substrates in a treatment plant, however,
suggest extremely complex models. The resolution of the trade-off between
relatively simple on-line models and complex structured models seems to be the
major problem in automation of biological treatment plants (Beck (1986)). Some of
the complex structured models for activated sludge systems are discussed below.

In mechanistic systems it is common to assume time invariant models, i.e. any
experiment can be repeated and the outcome will be the same as in earlier
experiments. This is not the case in biological systems. Instead the experiments
are often not reproducible. There are methods to detect this kind of process change
and actually use models in a systematic way to detect variations in operating
conditions. Recursive identification techniques is a useful tool in this respect.

Sometimes conventional controllers do not give sufficient control quality. Thus
self-tuning and so called dual controllers have been tested for dissolved oxygen
control. The purpose has been not only to get a better control performance, but also
to obtain parameter information during the control. It is demonstrated how the
oxygen uptake rate can be calculated on-line. Finally a model library is described,
that summarizes structured models for the activated sludge process. Some
aspects of the use of knowledge based systems are also described. Further
references are found in Beck (1986) and Olsson (1985, 1987).

Time series analysis

There are numerous examples of the application of time series analysis in
wastewater treatment modelling. Beck (1986) gives an excellent and
comprehensive survey. Generally the models obtained have a relatively low order
(usually less than two or three) due to the disturbances involved. Moreover the
models are usually linear and time invariant. This means that the model may be
valid only for the actual experimental conditions.

The dynamics is typically described as an input-output models, such as (1). The
parameters aj, bj and ¢j can be identified from observations of y and u. With the

maximum likelihood method the parameters can be identified with no bias, while
the parameter accuracy can be estimated from the Cramér-Rao inequality. There
are several other structures that can represent the input-output relation and the
noise character. For other structures than (1) there are different estimation
methods to find the parameters, such as the instrumental variable method. For
further results, see Ljung (1987).

Experiences on identifying the dynamics of dissolved oxygen were made already
in 1975 at the Kippala sewage works at Lidingo outside Stockholm, Sweden. The
air flow rate to one of the aerators was manipulated off-line in order to obtain the
air flow/DO concentration relationship. Models of first and second order of the
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structure (1) were calculated, using the Maximum Likelihoood method
(Olsson-Hansson (1976a, b)). Some interesting conclusions were made. By
assuming a constant oxygen uptake rate (OUR) the value of the oxygen transfer
rate Kr,a could be calculated. The assumption of constant OUR could be tested

afterwards by comparing the model with real data. This method made it possible
to detect changes in Ky,a by on-line experiments by manually manipulating the

air flow rate. Thus clogging of the diffusers or failing membranes of the DO
sensors could be detected.

Other experiments were made to find the secondary clarifier and thickener
dynamics. Time series analysis was found to be a powerful tool to detect
cause-effect relationships. The parameter models need less data than
conventional correlation analysis to find such relations. In Olsson-Hansson
(1976b) it was found that the effluent suspended solids was more sensitive to flow
rate increases than to flow rate decreases. This kind of work was extended later in
Olsson-Chapman (1985).

Structured model identification

In the time series approach there is no prior knowledge of the system dynamics
included in the model. With some structure added to the system it is possible to
achieve better accuracy of the system and include specific non-linear structures of
the dynamics. Still the structure of the model is given, and the identification is
consequently a parameter estimation problem.

Hydraulic flow modelling was studied in Olsson-Stephenson (1985) and
Olsson-Stephenson- Chapman (1986). The purpose of the model was to describe
how the flow rate propagates along the plant from the influent to the effluent part.
The propagation time is not negligible and has to be modelled in order to describe
how hydraulic shocks are damped before the clarifier. A typical model
assumption for each basin is the structure

.dh Q. (t)-
A = Qinlt) - Qourl®)

(7N

where

dh/dt = the rate of change of the liquid depth in the tank;

A = the tank surface area;

Qin = time-varying flow entering the tank, and

Qout = time-varying flow discharged from tank.
The discharge flow rate depends on the liquid height,

Qout = Ny ay hB (8

where
N = number of weirs;

o = weir coefficient, that depends on angle, width, and height;
B = exponent, that depends on weir type.
Experiments with four basins (primary settler, aerator, secondary settler and

effluent tube) were modelled, and influent and effluent flow rates for the plant
were recorded. Such a model was identified using a nonlinear simulation model



together with measurement data, according to figure 2.

Measurement y
data
+
u y - error i
Plant model m » Loss function
updated
parameter
Parameter <
adjusiment

Figure 2. Illustration of the structured identification.

The model included calculated parameters according to (7) and (8). Only one
unknown parameter, the return sludge flow rate, was identified in the
calculations. The model is assumed continuous while the data are time discrete.
A transient is simulated and compared with experimental data. The parameters
are then updated to adjust the model closer to the data. The simulation is repeated
until satisfactory adjustment is obtained. Depending on the data quality and the
accuracy of the structure of the model the identification may be more or less
successful,

The clarifier dynamics was identified in Olsson-Chapman (1985) using a similar
techniques. In this case the relation between the influent flow rate and effluent
suspended solids concentration was given, while the parameters were unknown.
The structure was a second order linear system for increasing flow rates and a
first order linear system (with different time constant) for decreasing flow rates.
This approach allowed successful identifications from several experiments on the
pilot plant 1 at the Wastewater Technology Centre in Burlington, Ontario.
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